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Abstract

For the case in which agents have arbitrary preferences over bundles of indivis-
ible objects and monetary transfers are impermissible, I propose a randomized
mechanism that generalizes the well-known probabilistic serial mechanism. This
generalized mechanism returns an ordinally e�cient assignment. It is asymp-
totically strategy-proof, asymptotically envy-free, and satis�es equal treatment
of equals. I also propose a cardinal mechanism, which returns a randomized
assignment that approximates a competitive equilibrium with equal income. It
satis�es ex-ante envy-freeness and e�ciency, and asymptotically envy-freeness.
Moreover, this mechanism is strategy proof in the continuum.
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1 Introduction

At least since the publication of Shapley and Scarf (1974), economists have been interested
in assigning indivisible objects to agents without the use of monetary transfers. This
problem has received renewed attention because of its applications to such problems as
school choice and housing assignments (Abdulkadiroglu and Sönmez (1998) and Chen
and Sönmez (2002)). Among the many mechanisms considered, one stands out: the
probabilistic serial mechanism (PS) (Bogomolnaia and Moulin (2001)). This mechanism
has a simple, intuitive description. Agents nibble away at objects to determine probability
shares over the objects that agents are awarded. Moreover, as Bogomolnaia and Moulin
(2001) show, it possesses the following attractive properties:

1. PS produces ordinally e�cient assignments.

2. PS is weakly strategy-proof.

3. PS is envy-free and therefore satis�es equal treatment of equals.

An alternative to the PS is the random priority mechanism (RP), which is widely used
in practice and, unlike PS, is strategy-proof. RP can be generalized to environments
in which agents consume bundles, while preserving strategy-proofness and weak envy-
freeness. Unlike PS, RP is not ordinally e�cient (Manea (2009)).

The PS mechanism is limited to cases in which each agent is interested in obtaining at
most one object. This prevents its use in environments that require allocating bundles of
objects to agents.1 The main contribution of this paper is to generalize the PS to such
settings and to show that it is asymptotically equivalent to RP. The result generalizes the
result in Che and Kojima (2010). I call this generalized mechanism the bundled proba-
bilistic serial mechanism (BPS). It has the following features:

� It produces ordinally e�cient assignments.

� It is asymptotically strategy-proof.

� It is asymptotically envy-free.2

� It satis�es equal treatment of equals.

� The unit-demand case reduces to the standard PS mechanism.

Kojima (2009) and Budish et al. (2013) have used probabilistic assignments to allocate
indivisible objects to agents when monetary transfers are not allowed. All of the authors
cited thus far limit attention to allocations that are representable as probabilities over
single objects. In the following paragraphs, I argue that this restriction should be relaxed.

In the one sided matching literature, an expected assignment determines the marginal
probability that an agent receives an object. To cover the case of agents with multi-unit
demand, Kojima (2009) and Budish et al. (2013) allow for the sum of probabilities that
an agent receives single objects to be greater than one. To be able to use any expected
assignment in practice, one must be able to represent the expected assignment as a lot-
tery over deterministic assignments in which agents do not overconsume objects. Such an
expected assignment is called implementable. One major issue with de�ning probability
shares over single objects is that agents may prefer one implementation of an expected

1Some examples of such environments are assigning courses to students, medical-student couples to hospital residencies,
and siblings to schools and dormitories. In these examples, a group of agents, namely a couple and or a set of siblings,
could be viewed as a single agent interested in obtaining multiple objects.

2This should be contrasted with an impossibility theorem in Kojima (2009). That theorem rules out the existence of a
mechanism that is weakly strategy-proof, envy-free, and ordinally e�cient.

2



assignment over others. This is because di�erent implementations result in di�erent lot-
teries over bundles. The following example shows this point.

Example 1: There are two agents, 1 and 2, and four objects, {a, b, c, d}. The agents'
preferences are as follows:
{a, b} �1 {c, d} �1 {a, c} �1 {b, d} �1 {a} �1 {c} �1 {b} �1 {d} �1 ∅ �1 all other bundles.
{c, d} �2 {a, b} �2 {b, d} �2 {a, c} �2 {b} �2 {d} �2 {a} �2 {c} �2 ∅ �2 all other bundles.

Consider an expected assignment in which agents consume single objects a,b,c, and d all
with probability one-half.3 Consider an implementation of this assignment in which, with
probability one-half, agents 1 and 2 are allocated {a, c} and {b, d}, respectively; and with
probability one-half they are allocated {b, d} and {a, c}, respectively. This implementation
is Pareto-dominated by the following implementation: with probability one-half agents 1
and 2 are allocated {a, b} and {c, d}, respectively; and with probability one-half they are
allocated{c, d} and {a, b}, respectively.

In cardinal settings in which the agents' utility functions are linear, this restriction
does no harm. This is because all implementations of the same expected assignment
result in the same expected utility for agents. In the course-scheduling application, this
assumption is not plausible,4 because the presence of complementarities would violate it.5

For these reasons, in order to take into account agents with arbitrary preferences over
bundles, I study expected assignments when probabilities are de�ned over bundles.

When probabilities are de�ned over single objects, implementability is trivial. In this
case, an expected assignment is implementable if no object is overconsumed (Kojima and
Manea (2010)). However, when probabilities are de�ned over bundles, implementabil-
ity is not trivial. One of the contributions of this paper is to characterize the set of
implementable expected assignments when probabilities are de�ned over bundles.

Kojima (2009) o�ers a generalization of the PS when agents have linear cardinal pref-
erences. In Kojima (2009)'s generalization of the PS mechanism to the case of multi-unit
demand agents, probability shares from multiple objects that are available are allocated
to agents in the same period of time and at the same speed. This mechanism may not
result in an ordinally e�cient assignment when preferences are nonlinear. Moreover, with
general preferences, it is neither envy-free nor strategy-proof. Example 5 in section 3
shows that the algorithm might result in Pareto-ine�cient assignments. Budish et al.
(2013) o�er a similar generalization of the PS mechanism when the designer has some
restrictions on the assignment of objects to agents.

To the best of my knowledge, Budish (2011) is the only paper that handles agents
with arbitrary preferences over bundles when monetary transfer is not allowed. Inspired
by Varian (1974), Budish (2011) proposes a deterministic mechanism, called A-CEEI, for
allocating bundles of indivisible objects to agents. A-CEEI chooses an allocation that
is the competitive equilibrium of an approximate economy in which agents have roughly
equal amounts of money. A-CEEI is strategy-proof in the continuum economy. However,
the allocation may not clear the economy considered.6 The allocation is not pareto-
e�cient except in an approximate sense. Furthermore, it is envy-free in an approximate
sense only. Finally, A-CEEI might violate equal treatment of equals; for example, this is
because two agents with identical preferences might be given di�erent budgets.

The tool that has enabled me to design a mechanism (BPS) which performs better
in some sense compared to A-CEEI is randomization. I use randomization to design a
probabilistic cardinal mechanism, P-CEEI, which asymptotically returns an allocation

3The sum of probabilities is more than one so agents consume more than one object in some realizations of the lottery.
4Students' marginal utility for an additional course could depend on courses they already have in their basket. For

example, whether the additional course overlaps with courses already in the basket would matter.
5In course scheduling, complementarities in preferences are present. The data (see Kojima et al.(2010)) suggest that

in the problem of assigning medical-student couples to hospitals, there are complementarities in couples' preferences over
pairs of hospitals.

6Therefore, it is impossible to use A-CEEI in environments with no �exibility in the supply.
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that is the competitive equilibrium of the economy in which agents have equal budgets.
This mechanism inherits asymptotic ex-post fairness, e�ciency, and strategy-proofness
from the CEEI mechanism.7

The outline of the paper is as follows. In section 2, I describe notation and the ordinal
model. A description of my generalization of the PS mechanism namelyy (BPS), along
with some other mechanisms is provided in section 3. In section 4, I present the properties
of the BPS mechanism. In section 5, I describe the cardinal model and present a cardinal
mechanism. Concluding remarks are in section 6.

2 Ordinal set up

The primitives of an ordinal economy are (N,G, (na)a∈G, (≺i)i∈N ) where N is a �nite
set of agents, G is a �nite set of objects, na is the number of copies of object a ∈ G,
and ≺i is agent i's preference ranking over bundles of objects. A bundle is a vector
in (N ∪ {0})|G| which speci�es the number of copies of each object.8 For each bundle S
and object a ∈ G, let na(S) ∈ N ∪ {0} be the number of copies of a in S. It must be
the case that na(S) ≤ na. Let ∅ = {0}|G| be the bundle with no objects. Let B be the
set of bundles in this economy. I assume preferences are strict. I do not assume that
agent neccessarily prefer a bigger bundle.9 Assume S �i T if agent i prefers bundle S
over bundle T . If ∅ �i S, then agent i does not �nd bundle S acceptable. Let S �i T if
S = T or S �i T . For each agent i, let Pi be the set of all possible ordinal preferences of
agent i and denote the set of preference pro�les by P = (Pi)i∈N . A typical element of P
is presented by �.

An expected assignment determines the marginal probability that an agent receives
a bundle. In this paper, I de�ne expected assignments as a function from the set of agent
bundle pairs to the interval [0, 1]. Let N×B be the set of agent-bundle pairs. Formally, an
expected assignment is a function x : N ×B→ [0, 1]. Given (i, B) ∈ N ×B, then x(i, B)
is the marginal probability that agent i receives bundle B. An expected assignment x is
deterministic if the range of x is {0,1}.

A deterministic assignment is implementable if each agent is allocated at most one
bundle and no object is overconsumed. In such assignments, some agents may allocated
no non-empty bundle.

De�nition 2.1. A deterministic assignment x is implementable if it satis�es the following
two conditions:

� For all agents i ∈ N and for all distinct pairs of bundles B,B′ ∈ B , it must be the
case that x(i, B)x(i, B′) = 0.

� For all objects a ∈ G,
∑

i∈N
∑

B∈B na(B)x(i, B) ≤ na.
Let Φ be the set of all deterministic implementable assignments in this economy. An

expected assignment x is implementable if it can be represented as a probability distri-
bution over deterministic implementable assignments.

De�nition 2.2. An expected assignment x is implementable if, for some implementable
deterministic assignments (xj)kj=1 and some nonnegative real numbers (αj)

k
j=1 that satisfy∑k

j=1 αj≤ 1, the following holds:

x =
k∑
j=1

αjx
j ,

7See Varian (1947) for a description of CEEI.
8In all examples in this paper, when there are no copies of objects, I use sets of objects to represent bundles of objects.
9In course scheduling application, a larger bundle of courses may create schedule con�ict.
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where αj is the probability of assigning xj to agents.

The following example shows how to implement an expected assignment.

Example 2: There are three agents N = {1, 2, 3} and three objects G = {a, b, c}, each
with one copy. Consider the following expected assignment:

� x(1, {b, c})= x(1, {b}) = 1
3 , and x(1, B) = 0 for all other bundles B.

� x(2, {a, c}) = x(2, {c}) = 1
3 , and x(2, B) = 0 for all other bundles B.

� x(3, {a, b}) = x(3, {a}) = 1
3 , and x(3, B) = 0 for all other bundles B.

Assignment x is implementable by a uniform distribution over three deterministic im-
plementable assignments: x1, x2, and x3. In x1, agent 1 is allocated {b, c}, agent 3 is
allocated {a}, and nothing is allocated to agent 2. In x2, agent 2 is allocated {a, c}, agent
1 is allocated {b}, and nothing is allocated to agent 3. In x3, agent 3 is allocated {a, b},
agent 2 is allocated {c}, and nothingis allocated to agent 1.

The following proposition characterizes the set of implementable expected assignments.
Before presenting the proposition, I de�ne some important notation. Let N × B =
{ω1, ω2, ..., ωp} where each ωr is an agent-bundle pair. Let Φ = {φ1, φ2, φ3, ..., φf}, where
each φs is an implementable deterministic assignment. Implementable expected assign-
ments are convex combinations of elements of Φ; denote the set of these convex combi-

nations by ∆(φ). Each function h : N × B → R can be represented as a vector
−→
h ∈ Rp,

where
−→
h = (h(ω1), h(ω2), h(ω3), ..., h(ωp)).

This vector is called the corresponding vector of h. Let U = [u(r, s)]p×f be a matrix
with the property such that u(r, s) = 1 i� φs(ωr) = 1, and equals zero otherwise. In other
words, each row of U corresponds to an agent bundle pair, and each column corresponds
to an implementable deterministic assignment; the array is 1 if the agent is allocated the
bundle in the assignment; otherwise, it is zero. Let

−→
1 ∈ Rf be a row vector of all ones,

that is,
−→
1 = (1, 1, 1, ..., 1)︸ ︷︷ ︸

f times

. Given two vectors v = (vi)
n
i=1 and v′ = (v′i)

n
i=1, I de�ne the

relationv ≤ v′ to be vi ≤ v′i for all 1 ≤ i ≤ n.
Proposition 2.3. An expected assignment x is implementable i� for all λ : N × B →
R+ ∪ {0} satisfying

−→
λ U ≤ −→1 , then

−→
λ .−→x ≤ 1.

Proof. See appendix A for the complete proof. One can view λ as the agents' cardinal
preferences. Given (i, B) ∈ N × B, let λ(i, B) be the utility that agent i gets from con-
suming the bundle B. The contrapositive of the proposition is equivalent to the following
statement: the expected assignment x is implementable i� for all cardinal utilities such
that the sum of agents' expected utilities is more than 1 under assignment x, then the
sum of the agents' utilities for some deterministic implementable assignment is also more
than 1.

The following example is an application of this proposition.

Example 3: There are three agents N = {1, 2, 3} and three objects G = {a, b, c}, each
with one copy. Consider the following expected assignment:

� Let x(1, {b, c}) = 1
2 , and x(1, B) = 0 for all other bundles B.
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� Let x(2, {a, c}) = 1
2 , and x(2, B) = 0 for all other bundles B.

� Let x(3, {a, b}) = 1
2 , and x(3, B) = 0 for all other bundles B.

Assignment x is not implementable. Consider λ as follows:

� Set λ(1, {b, c}) = 1 and λ(1, B) = 0 for all other bundle B.

� Set λ(2, {a, c}) = 1 and λ(2, B) = 0 for all other bundle B.

� Set λ(3, {a, b}) = 1 and λ(3, B) = 0 for all other bundle B.

Think of λ(i, B) as agent i's cardinal utility from bundle B. Note that the sum of agents'
expected utilities from allocation x is 3

2 , but for all implementable deterministic assign-
ments the sum of utilities is less than one.

Any expected assignment when agents have unit demands is implementable i� no object
is overconsumed (Kojima and Manea (2010)). This notion of �no overconsumption� can
be generalized to the case of agents with a multi-unit demand.

De�nition 2.4. An expected assignment x is feasible if both of the following conditions
hold:

� For each agent i ∈ N :
∑

S∈B x(i, S) ≤ 1.

� For each object a ∈ G:
∑

i∈N
∑

S∈B na(S)x(i, S) ≤ na.

If objects are divisible, I can treat probability shares of bundles as fractions of bundles.
Feasibility conditions guarantee that the designer can allocate a fraction of the bundles
to agents. The expected assignment presented in Example 3 (in section 4) is feasible
but not implementable. It is easy to see that the feasibility conditions are necessary
for implementability but they are not su�cient. However, I will show in section 4 that
in large assignment problems, any feasible expected assignment comes close to being
implementable.

An implementable deterministic assignment is Pareto-e�cient if there is no other im-
plementable deterministic assignment in which all agents are weakly bettero� and some
agents are strictly better o�. An implementable expected assignment is ex-post e�cient
if it can be represented as a probability distribution over Pareto-e�cient implementable
deterministic assignments. An assignment is ordinally e�cient if there is no other im-
plementable assignment that all agents would weakly prefer and that some agents would
strictly prefer under the �rst-order stochastic dominance criterion (FOSD).

De�nition 2.5. Agent i prefers expected assignment y to expected assignment x under
the FOSD criterion if for all B ∈ B,∑

S�iB
x(i, S) ≤

∑
S�iB

y(i, S).

He strictly prefers y over x under the FOSD criterion if the inequality is strict for some
B ∈ B.

De�nition 2.6. An implementable expected assignment x is ordinally e�cient if there is
no implementable expected assignment y such that (i) all agents prefer y over x under the
FOSD criterion and (ii) some agents strictly prefer y over x under the FOSD criterion.

Note that ordinal e�ciency is stronger than ex-post e�ciency. In settings in which
agents have unit-demand preferences, Manea (2008) has identi�ed an ordinal welfare
theorem, which can be generalized to the present case.
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Proposition 2.7. Let assignment x be implementable. Assignment x is ordinally e�cient
if and only if for some agents' cardinal preferences, compatible with their ordinal prefer-
ences, x maximizes the total agents' utility subject to the implementability constraint.

Proof. If y dominates x under the FOSD criterion, then the sum of agents' expected util-
ities under x is smaller compared to that under y, for all cardinal preferences compatible
with the ordinal preferences. Therefore, if x maximizes the sum of agents' expected util-
ities, then it must be ordinally e�cient.

To prove the reverse, I de�ne T : ∆(Φ) → RP as follows. Given x ∈ ∆(Φ), consider a
function y : N ×B→ R as y(i, B) =

∑
S�iB x(i, S) for all (i, B) ∈ N ×B. Set T (x) = −→y ,

where −→y is the corresponding vector of y. This function maps the set of implementable
expected assignments to a polyhedron. Ordinally e�cient assignments are mapped to
the northeast boundary points of this polyhedron. Applying the separating hyperplane
theorem, I conclude that for any ordinally e�cient and implementable assignment x∗,
there is a positive vector −→q ∈ RP with the property that: −→q .T (x) ≤ −→q .T (x∗) for all

x ∈ ∆(Φ). Given −→q , consider λ : N ×B → R such that
−→
λ = −→q . For all (i, B) ∈ N ×B,

the utility of agent i for bundle B is de�ned as follows:

ui(B) =
∑
S�iB

λ(i, S).

This utility function satis�es the condition in the theorem.

An ordinal mechanism f maps reported preferences to implementable assignments.
That is, f is a function f : P → ∆(Φ). Given the agents' preference pro�le � agent i ∈ N
and bundle B ∈ B, then f(�)(i, B) is the marginal probability that agent i receives bundle
B. A mechanism is strategy-proof if each agent prefers, under the FOSD criterion, the
random assignment with truth-telling over the random assignment with a misreport.

De�nition 2.8. Mechanism f is strategy-proof if for all agents i ∈ N , �i & �′i∈ Pi,�−i∈
P−i, and bundle B ∈ B, the following holds:∑

S�iB f(�i,�−i)(i, S) ≥
∑

S�iB f(�′i,�−i)(i, S).

An ordinal mechanism is weakly strategy-proof if no agent can strictly improve his
expected assignment, under the FOSD criterion, by misreporting his preferences.

De�nition 2.9. Mechanism f is weakly strategy-proof if for all i ∈ N , bundle B ∈ B,
�i∈ Pi , and �−i∈ P−i there is no �′i such that the following holds:∑

S�iB f(�i,�−i)(i, S) ≤
∑

S�iB f(�′i,�−i)(i, S),

with strict inequality for some bundle B ∈ B.

A mechanism is envy-free if agents prefer, under the FOSD criterion, their own
expected assignment to any other agent's expected assignment.

De�nition 2.10. Mechanism f is envy-free if for all i, j ∈ N ,≺∈ P , and bundle B ∈ B,
the following holds: ∑

S�iB f(�)(i, S) ≥
∑

S�iB f(�)(j, S).

A mechanism is weakly envy-free if no agent strictly prefers, under the FOSD cri-
terion, another agent's expected assignment to his own expected assignment.
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De�nition 2.11. Mechanism f is weakly envy-free if, for all pairs of agents i, j ∈ N and
preference pro�le ≺∈ P , the following holds:

∀B ∈ B
∑

S�iB f(�)(i, S) ≤
∑

S�iB f(�)(j, S)⇒ ∀B ∈ B f(�)(i, B) = f(�)(j, B).

A mechanism satis�es equal treatment of equals if all agents with the same reported
preferences receive the same expected assignments.

De�nition 2.12. Mechanism f satis�es equal treatment of equals if, for all i, j ∈ N and
≺i=≺j, then f(�)(i, B) = f(�)(j, B) for all B ∈ B. This means that agents with the same
reported preferences are allocated the same expected assignments.

3 Mechanisms

In this section, I present two ordinal mechanisms. The �rst mechanism, random priority
(RP), is widely used in practice. The second mechanism, the bundled probabilistic
serial mechanism (BPS), is my proposed generalization of the PS mechanism.

3.1 Random-Priority Mechanism

In the RP agents are ordered uniformly at random. Based on the order assigned, agents
are asked, one at a time, to pick their best available bundle. This ordinal mechanism is
strategy-proof and weakly envy-free. RP may produce ordinally ine�cient assignments
(Bogomolnaia and Moulin (2001)). Moreover, as discussed in Budish and Cantillon (2012),
the mechanism might result in large ex-post envy. In the following example, I run the RP
mechanism.

Example 4: There are three agents {1, 2, 3} and four objects with single copies

{a, b, c, d}.

Preferences are de�ned as follows:

� {d, b, c} �1 {b, c} �1 ∅ �1 all other bundles.

� {d} �2 {a, b} �2 {a} � ∅ �2 all other bundles.

� {d} �3 {a, c} �3 {c} �3 ∅ �3 all other bundles.

RP results in the following expected assignment:

� x(1, {b, c, d}) = 1
3 , x(1, {b, c}) = 1

3 , and x(1, B) = 0 for all other bundles B.

� x(2, {a}) = 1
2 , x(2, {a, b}) = 1

6 , x(2, {d}) = 1
3 , and x(2, B) = 0 for all other bundles

B.

� x(3, {a, c}) = 1
6 , x(3, {d}) = 1

3 , and x(1, B) = 0 for all other bundles B.

3.2 The Bundled Probabilistic Serial Mechanism

Before de�ning the BPS mechanism, I present an example that shows why the general-
ization of the PS mechanism in Kojima (2009) may be ine�cient.

Example 5: Consider the setup in Example 1. If agents are interested in obtaining
bundles of size at most two, the generalization in Kojima (2009) would result in an as-
signment in which agent 1 is allocated {a, c} and agent 2 is allocated {b, d}. This is not
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e�cient, since it is Pareto-dominated by an assignment in which agent 1 consumes {a, b}
and agent 2 consumes {c, d}.

Loosely speaking, in the BPS mechanism agents are allocated probability shares from
their best possible bundle with the same speed, subject to the constraint of implementabil-
ity.

Here is a formal de�nition of the mechanism. For all (i, B) ∈ N ×B let I{ω=(i,B)} be a
deterministic assignment in which agent i is allocated bundle B, and nothing is allocated
to other agents. If B = ∅, set I{ω=(i,B)} = 0. Given an initial implementable assignment
x, a bundle is available for agent i if adding that bundle with small enough probability
to agent i′s assignment does not violate the implementability of the allocation. In other
words, x + εI{ω=(i,B)} ∈ ∆(Φ), for some ε > 0. Let Bx

i be the best available bundle for
agent i. If there is no available bundle for agent i, let Bx

i be the empty bundle. The
expected assignment M(x) ∈ ∆(Φ) is de�ned as:

M(x) = x+ εx
∑
i∈N

I{ω=(i,Bxi )},

where εx is the largest positive number such that the assignment x + εx
∑

i∈N I{ω=(i,Bxi )}
is implementable. If Bx

i 6= 0 for some agent i ∈ N , then, since ∆(Φ) is convex, such an
εx > 0 exists. If Bx

i = ∅ for all agents i, set M(x) = x. Given the initial allocation x, in
order to construct to construct M(x), agents simultaneously eat the best bundle that is
available to them as long as the expected assignment is implementable.

I now consider the following sequence exptected assignments:

0,M1(0),M2(0),M3(0), ...

where Mk(0) = M(Mk−1(0)). Let τ be the �rst index such that Mτ (0) = Mτ−1(0), and set
BPS= Mτ (0). Such a τ exists, since (i) there is a �nite number of agents and bundles,
(ii) in each step at least one agent changes his bundle, and (iii) the agents who changed
their bundles in a given step will not be reallocated probability shares from these bundle
in future steps.

In the following example, I apply Proposition 2.3 to run this algorithm.
Example 6: Consider the setup in Example 5. Starting from the assignment of

0, the BPS allocates to agents 1, 2, and 3 probability shares from bundles {d, b, c},{d},
and {d}, respectively. Allocating a one-third probability share of these bundles results
in an implementable assignment, and further assignment of these bundles results in the
overconsumption of object d and hence violates implementability. Therefore, M1(0) is the
allocation that agents get one-third probability shares of their best bundles.

Since allocating more probability shares of any agent's best bundle would violate im-
plementability, best bundles are no longer available to agents. Simultaneously, they all
point to their second-best bundles, which are {b, c},{a, b}, and {a, c}, respectively. I
argue that the expected assignment M2(0) is constructed by allocating these bundles to
agents with probability 2

9 . First, I show that the candidate M2(0) is implementable. It
can be implemented by the �ve implementable deterministic assignments x1, x2, x3, x4,
and x5 with corresponding probabilities 1

3 ,
2
9 ,

1
9 ,

1
9 , and

2
9 , respectively. In x1, agent 1 is

allocated {d, b, c}. In x2, agent 2 is allocated {d} and agent 3 is allocated {a, c}. In
x3, agent 1 is allocated {b, c} and agent 2 is allocated {d}. In x4, agent 1 is allocated
{b, c} and agent 3 is allocated {d}. In x5, agent 2 is allocated {a, b} and agent 3 is
allocated {d}. Second, I show that 2

9 is the highest probability share of bundles that
one can allocated. I use Proposition 2.3. Consider the following λ: λ(1, {b, c, d}) = 1;
λ(2, {d}) = λ(3, {a, c}) = λ(1, {b, c}) = λ(2, {a, b}) = λ(3, {d}) = λ(3, {c}) = 1

2 ; and
λ(i, B) = 0 for all other (i, B). Note that λ satis�es the conditions in the proposition and
λ.M2(0) = 1. Therefore, I cannot allocate probability shares of these bundles to agents
any more.
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Agent 1 now has no other acceptable bundle. Agents 2 and 3 point to their third and last
acceptable bundles, {a} and {c}, respectively. Agent 3 cannot be allocated any of {c}, since
the same λ as in the previous case can be used to show that it would violate implementabil-
ity. Agent 2 cannot be allocated more than a 1

9 + 1
3 probability share of object a; otherwise

sum of the probability shares of bundles allocated to agent 2 exceeds 1. To show that
adding a 4

9 probability share of object a to agent 2 makes thte expeced assignmentM3(0),
it su�ces to show that this is implementable; in fact, it can be implemented by thte �ve
implementable deterministic assignments x1, x2, x3, x4, and x5 with corresponding proba-
bilities 1

3 ,
2
9 ,

1
9 ,

1
9 and 2

9 , respectively. In x1, agent 1 is allocated {d, b, c} and agent 2 is
allocated {a}. In x2, agent 3 is allocated {a, c} and agent 2 is allocated {d}. In x3, agent
1 is allocated {b, c} and agent 2 is allocated {d}. In x4, agent 1 is allocated {b, c}, agent 3
is allocated {d}, and agent 2 is allocated {a}. In x5, agent 2 is allocated {a, b} and agent
3 is allocated {d}. The algorithm stops and the allocation produced by BPS mechanism
is as follows:

� BPS(1, {b, c, d}) = 1
3 , BPS(1, {b, c}) = 1

9 , and BPS(1, B) = 0 for all other bundles
B.

� BPS(2, {a}) = 4
9 , BPS(2, {d}) = 1

3 , BPS(2, {a, b}) = 2
9 , and BPS(2, B) = 0 for all

other bundles B.

� BPS(3, {d}) = 1
3 , BPS(3, {a, c}) = 2

9 , and BPS(3, B) = 0 for all other bundles B.

4 Properties of the BPS

4.1 General Properties of BPS

Remark 4.1. BPS is a generalization of PS; i.e., when agents point to single objects,
BPS and PS are the same.

Proof. Proof follows from the fact that feasibility and implementability are equivalent
when the lottery is over single objects.

Theorem 1. BPS produces ordinally e�cient assignments and satis�es equal treatment
of equals.

Proof. See appendix B for the proof.

4.2 Properties of BPS in Large Assignment Problems

To discuss the properties of BPS in large economies, I �rst formally de�ne large economies
and the continuum economy. The de�nition here of the q−economy is similar to its
de�nition in Che and Kojima (2010). For each q ∈ N, the q=economy consists of

(Nq, G, (n
q
a)a∈G, (≺i)i∈Nq).

G is the set of objects. Each object a ∈ G has (nqa) copies. I assume that there exists a
κ > 0 such that agents do not �nd bundles with sizes more than κ acceptable. This as-
sumption is reasonable in at least some applications. For example, in course scheduling a
time restriction limits the size of acceptable bundles. Also, in the problem of assigning sib-
lings to schools and medical-student couples to residencies, the size of bundles demanded
does not depend on the size of the economy considered. I assume that the number of
copies of each object is at least κ in all q-economies; furthermore, limq→∞ n

q
a = ∞ for

all a ∈ G. Let B∗ be the set of bundles with size at most κ. The set of agents, Nq, is
partitioned into k subsets, Πq

θ for 1 ≤ θ ≤ k, where all agents with the same type have the

10



same preference ranking over bundles in the q−economy. Agents that are in the set Πq
θ

are called agents with type θ. An expected assignment in the q−economy is symmetric
if all agents in the same partition receive the same expected assignments. Formally, x is
symmetric if for all 1 ≤ θ ≤ k, B ∈ Bq, and i, j ∈ Πq

θ, x(i, B) = x(j, B).

The continuum economy is also a model of large economies. I de�ne it to be the
limit of q−economies as q converges to in�nity. The primitives of this economy are:

(N∗, G, (n∗a)a∈G, (m
∗
θ)1≤θ≤k, (≺i)i∈N∗).

For each object a ∈ G, there is a mass n∗a of this object. The set of agents, N
∗, is an interval

of real numbers partitioned into k intervals (Π∗θ)1≤θ≤k. Each point in N∗ corresponds to
an agent. For all 1 ≤ θ ≤ k, the length of Π∗θ is m

∗
θ. Agents do not �nd bundles of size

more than κ acceptable. The set of all bundles with sizes no more than κ is denoted as
B∗. For each 1 ≤ θ ≤ k, the agents in Π∗θ have the same preference ranking of bundles
in B∗ as do the agents with type θ in the q−economies. An expected assignment in the
continuum environment is a function x : N∗ × B∗ → [0, 1]. The expected assignment is
deterministic if the range of x is {0, 1}. A deterministic assignment is implementable if (i)
agents are allocated to at most one bundle, and (ii) for all objects a ∈ G the measure of
agents allocated to bundles that include object a (including all copies of a in all bundles)
does not exceed n∗a. That is,

∫
N∗

∑
B∈B∗ x(i, B)na(B)di ≤ n∗a for all a ∈ G. An expected

assignment in the continuum economy is implementable if it can be represented as a
probability distribution over implementable deterministic allocations. Similarly, I can
de�ne feasibility for expected assignments: x is feasible if

∫
N∗

∑
B∈B∗ x(i, B)na(B)di ≤ n∗a

for all a ∈ G and for all i ∈ N∗,
∑

B∈B∗ x(i, B) ≤ 1. If agents with the same type are
allocated the same expected assignment, the assignment is called symmetric. I now show
that in the continuum economy, feasibility and implementability are equivalent.

Proposition 4.2. A symmetric expected assignment is implementable in the continuum
economy if and only if it is feasible.

Proof. Let x be a symmetric and feasible expected assignment, and let

B∗ ={S1, S2, S3, ..., Sm}.

For all 1 ≤ θ ≤ k, assume that agents with type θ are located in the following interval:

[

θ−1∑
t=0

m∗t ,

θ−1∑
t=0

m∗t +m∗θ],

where m∗0 = 0. Let π = (πθ)1≤θ≤k ∈ Π
1≤θ≤k

[
∑θ−1

t=0 m
∗
t ,
∑θ−1

t=0 m
∗
t +m∗θ]. Move the agent with

position t in the interval [
∑θ−1

t=0 m
∗
t ,
∑θ−1

t=0 m
∗
t +m∗θ] to position t+ πθ( mod m∗θ). That is,

if t + πθ ≤
∑θ−1

t=0 m
∗
t + mθ∗, then the new position is t + πθ; otherwise, it is t + πθ −m∗θ.

I construct yπ as follows: for all 1 ≤ θ ≤ k, i ∈ Π∗θ, and 1 ≤ j ≤ m, given the new
position of agents, assume that x(i, S0) = 0 and allocate Sj to agents in the interval

[
∑θ−1

t=0 m
∗
t +

∑j−1
l=0 x(i, Sl),

∑θ−1
t=0 m

∗
t +

∑j
l=0 x(i, Sl)]. Note that yπ is an implementable

deterministic allocation in the continuum economy, and that x can be represented as a
lottery over yπ, where π is uniformly distributed in Π

1≤θ≤k
[
∑θ−1

t=0 m
∗
t ,
∑θ−1

t=0 m
∗
t +m∗θ].

Throughout this paper, I make the following assumption:
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Assumption 4.3. For each object a ∈ G, m∗a 6= 0. Also, the sequence of the q=economy

converges to the continuum economy, i.e., limq→∞
nqa
q = n∗a and limq�∞

|Πθq |
q = m∗θ ∈ R,

∀1 ≤ θ ≤ k.
This assumption says that both the number of copies of each object and the number

of agents with each type grow at the same rate as q.

The following proposition shows that, in large economies, any feasible expected assign-
ment comes close to being an implementable assignment.

Proposition 4.4. Rounding: Let (xq)q∈N be a sequence of feasible expected assignments
where xq : N × B∗ →[0, 1] is an expected assignment in the q−economy. There exists a
sequence (yq)q∈N, where yq is an expected assignment in the q−economy such that for all
ε > 0, there exists Q > 0 that satis�es the following:

∀ω ∈ Nq ×B∗ and q > Q, |xq(ω)=yq(ω)| < ε.

Proof. See appendix C for the proof, which relies neither on the partitioning of N q into k
subsets nore Assumption 4.3.

To show that RP and BPS are asymptotically equivalent, I introduce a naive gen-
eralization of the PS mechanism, called NPS. Recall that in PS, indivisible objects are
regarded as divisible probability shares, and agents simultaneously, at unit speed and for
one unit of time, take probability shares from the best available object. The portion
that each agent consumes from an object is the probability that the agent is allocated
the object. I can generalize this mechanism to the environment studied here. A natural
generalization is to allow agents, for one unit of time at the unit speed, to eat the best
bundle whose objects were not previously consumed.

Consider the (N,G, (na)a∈G, (≺i)i∈N ) economy. For any object a ∈ G and any subset
of goods A ⊆ G, let mi(A) be agent i′s most preferred bundle, consisting of objects in A.
Let mi

a(A) be the number of copies of object a in mi(A), that is, mi
a(A) = na(m

i(A)). Set
ma(A) =

∑
i∈N m

i
a(A); note that ma(A) is the total number of copies of object a in all

agents' preferred bundles. Following (Bogomolnaia and Moulin (2001)), the generalization
is de�ned formally by the following steps. For step v = 0 and all objects a ∈ G, let
G(0) = G, t(0) = 0, xa(0) = 0, and NPS(0) = 0. Given step v − 1, step v is de�ned as
follows:

� ta(v) = sup{t ∈ [0, 1]|xa(v − 1) +ma(G(v − 1))(t− t(v − 1)) ≤ na}.
� t(v) = mina∈G(v−1) ta(v) .

� G(v) = G(v − 1)− {a ∈ G(v − 1)|ta(v) = t(v)} .
� xa(v) = xa(v − 1) +ma(G(v − 1))(t(v)− t(v − 1)) .

� NPS(v) = NPS(v − 1) +
∑

i∈N (t(v)− t(v − 1))I{ω=(i,(G(v−1))}.

The last step is de�ned as v = min{v|t(v) = 1}.
Given the initial allocation of NPS(v−1), t(v) is the time at which step v ends. Denote

the set of objects not exhausted at the end of step v by G(v). Given object a ∈ G, xa(v)
is the amount of consumption from object a until the end of step v. If object a is being
consumed in step v, then ta(v) is the time when object a will be totally consumed. Since
there is a �nite number of objects, this process stops in a �nite number of steps. NPS is
the last step's allocation. The expected assignment produced is feasible but it may not
be implementable, as the following example shows.

Example 8: There are three objects {a, b, c} and three agents {1, 2, 3} with the following
preferences:
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� {b, c} �1 {b} �1 {c} �1 ∅ �1 all other bundles.

� {a, c} �2 {a}�2 {c} �2 {a, b} �2 ∅ �2 all other bundles.

� {a, b} �3 {a} �3 {a, c} �3 ∅ �3 all other bundles.

NPS produces an assignment in which agent 1 consumes bundle {b,c}, agent 2 consumes
bundle {a,c}, and agent 3 consumes {a,b}, all with probability half. In this expected assign-
ment, although no object is overconsumed, the expected assignment is not implementable.

Since the result of this mechanism may not be implementable, we cannot use this
mechanism in practice. A pseudomechanism is a function that maps ordinal prefer-
ences to feasible expected assignments. NPS is a pseudomechanism. The properties of
envy-freeness and weak strategy-proofness can be generalized naturally to pseudomecha-
nisms.10 Despite the implementability issue, NPS satis�es the properties of the standard
PS mechanism.

Proposition 4.5. NPS satis�es the envy-free and weak strategy-proof properties.

Proof. This proof is omitted since it is an adaptation of Theorem 1 and Proposition 1 in
Bogomolnaia and Moulin (2002).

Since feasibility and implementability coincide for symmetric expected assignments in
the continuum economy, BPS and NPS coincide. BPS and NPS can be constructed
for the continuum economy using the following steps. For step v = 0, let G∗(0) =
G, t∗(0) =x∗a(0) = 0 for all objects a ∈ G. For each subset of objects A ⊆ G, let
ma(A) =

∫
i∈N∗m

i
a(A)di. Given G∗(v=1), t∗(v=1), ) x∗a(v=1) for all a ∈ G:

� t∗a(v) = sup{t ∈ [0, 1]|x∗a(v=1) +ma(G(v=1))(t=t∗(v=1)) ≤ m∗a}.

� t∗(v) = mina∈G(v−1) t
∗
a(v).

� G∗(v) = G∗(v=1)={a ∈ G∗(v=1)|t∗a(v) = t∗(v)}.

� x∗a(v) = x∗a(v − 1) +ma(G
∗(v=1))(t∗(v)=t∗(v=1)).

The last step is de�ned as v = min{v|t∗(v) = 1}.
Interpretations of t∗a(v), t∗(v), G∗(v), and x∗a(v) are the same as those forta(v), t(v), G(v),

and xa(v), respectively.
Since NPS∗ is symmetric and feasible in all of its steps, it is implementable in all steps.

Because of this, the BPS mechanism in the continuum economy, denotaed as BPS∗, is
the same as NPS∗.

4.2.1 Asymptotic Equivalence of RP and BPS

Che and Kojima (2010) show that PS and RP are asymptotically equivalent for unit-
demand agents. Their result is generalized in Liu and Pycia (2012) asymptotic equiva-
lence result for any two mechanisms that satisfy a number of properties. In this section,
I generalize the result of Che and Kojima (2010) to the case of agents with a multi-unit
demand. For any mechanism f , let f q and f∗ be the adaptation of f to the q−economy
and to the continuum economy, respectively.

The following de�nition formally de�nes the convergence of mechanisms.

10Given a pseudo mechanism f , f is envy free if for all i, j ∈ N , i prefers, under the FOSD criterion, his own assignment to
agent j's assignment. It is weakly strategy-proof if no agent can strictly improve his assignment, under the FOSD criterion,
by misreporting his preferences.
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De�nition 4.6. Mechanism f converges to f∗ if, for all ε > 0, there is a Q > 0 such that
for all q ≥ Q, 1 ≤ θ ≤ k, i ∈ N q

θ , i
∗ ∈ Nθ∗, and all bundles B ∈ B∗ |f q(i, B)−f∗(i∗, B)| < ε.

Two mechanisms f and g are asymptotically equivalent if, for all ε > 0, there is a
Q > 0 such that for all q ≥ Q, ∀1 ≤ θ ≤ k, all i, j ∈ N q

θ , and all bundles B ∈ B∗,

|f q(i, B)− gq(j, B)| < ε.

.

Proposition 4.7. NPSq converges to NPS∗.

Proof. The proof is omitted, since it is also a variation of the proof of Theorem 1 in Che
and Kojima (2010).

Proposition 4.8. RP q converges to NPS∗.

Proof. The proof is omitted, since it is also a variation of the proof of Theorem 2 in Che
and Kojima (2010).

Theorem 2. BPS and RP are asymptotically equivalent.

Proof. For the complete proof, see appendix D. Propositions 4.7 and 4.8, together with
the asymptotic equivalence of BPS and NPS, prove the theorem. I prove that BPS and
NPS are equivalent by induction on the steps of the BPS mechanism.

Asymptotically strategy-proofness and asymptotically envy-freeness are de-
�ned in a way that is similar to the de�nition of strategy-proofness and envy-freeness.

De�nition 4.9. A mechanism f is asymptotically strategy-proof if, for all ε > 0, there
exists a Q > 0 such that, for all q > Q , all i ∈ Nq , �i & �′i∈ Pi, �−i∈ P−i, and B ∈ B∗,
the following holds:∑

S�iB fq(�i,�−i)(i, S) + ε ≥
∑

S�iB fq(�
′
i,�−i)(i, S).

Mechanism f is asymptotically envy-free if, for all ε > 0, there exists a Q > 0 such that
for all q > Q, all pair of agents i, j ∈ Nq, �∈ P , and bundle B ∈ B∗, the following holds:∑

S�iB fq(�)(i, S) + ε ≥
∑

S�iB fq(�)(j, S).

Though BPS is not in general strategy-proof and envy-free, it possesses these proper-
ties asymptotically. The following statement, which is a corollary of Theorems 1 and 2,
summarizes all properties of the BPS mechanism.

Corollary 4.10. BPS has the following properties:

1. It produces ordinally e�cient probabilistic allocations.

2. It satis�es equal treatment of equals.

3. It is asymptotically strategy-proof.

4. It is asymptotically envy-free.

Proof. Theorem 1 states the �rst two properties. Theorem 2, along with the fact that RP
is strategy-proof, implies the third and fourth.
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5 A Cardinal Mechanism: P-CEEI

In this section I relax the assumption that preferences are strict.
Varian (1974) proposes a way to allocate indivisible objects when agents have unit

demand. His mechanism is called competitive equilibrium from equal income (CEEI). In
CEEI the designer endows agents with equal amounts of a fake budget and �nds the
competitive equilibrium.

The di�culty in generalizing this idea to the case of agents with a multi unit demand
is that in general prices that clear the economy being considered may not exist. Budish
(2011) has generalized this idea for the case of agents with multi-unit demand. His ordinal
mechanism (A-CEEI) requires increasing the number of objects, and it may allocate dif-
ferent fake budgets to di�erent agents. I generalize the Varian (1974) mechanism without
increasing the number of objects or allocating discriminatory budgets. The idea is that
when I consider random assignments of bundles of objects, market-clearing prices exist.
This random assignment is feasible, but unfortunately it may not be implementable. I
therefore use the rounding proposition to make this assignment implementable.

Example 7: Consider two agents, 1 and 2, and four objects {a, b, c, d}, each with one
copy. Agents' preferences over bundles of objects are as follows:

� u1({a, b}) = u1({c, d}) = 3, and 1 ≥ u1(B) ≥ 0 for all other bundles B.

� u2({a, c}) = u2({b, d}) = 4, and 1 ≥ u2(B) ≥ 0 for all other bundles B.

Agents are endowed with one unit of a fake budget. If pa = pb =pc =pd =1
2 , consider the

following random assignment. Agent 1 is allocated {a, b} and {c, d}, each with probabil-
ity one-half; while agent 2 is allocated {b, d} and {c, a}, each with probability one-half.
This random assignment is feasible. Note that there is no price vector and corresponding
deterministic allocation that would clear the market.

A-CEEI is approximately e�cient, strategy-proof in the continuum economy, and is
approximately ex-post fair. My generalization of CEEI, P-CEEI, is strategy-proof in
the continuum, approximately e�cient, ex-ante envy-free, and ex-post envy-free with a
high probability. More importantly, P-CEEI does not require adding additional copies of
objects to the economy.

5.1 Setup for the Cardinal Economy

The primitives of the cardinal economy are (N ;G; (na)a∈G, (ui)i∈N ), where N, G, and
(na)a∈G are de�ned as in the ordinal case. The utility that agent i receives from bundle
B is ui(B). I assume that ui(∅) = 0 for all agentsi ∈ N . If i does not �nd bundle B
acceptable, then assume ui(B) = −∞. The q−economy in the cardinal environment is
de�ned as in the ordinal setting, except for the fact that, agents with similar preferences,
are not partitioned into subsets. In the q−economy, agents do not �nd bundles of size
more than κ acceptable. I assume that there is a uniform bound on the utility that agents
have in the q−economy, for all q ∈ N . Otherwise, preferences are arbitrary. Assume that
agents rank lotteries over bundles with their expected utilities.

5.2 Description of the mechanism

Consider the economy consisting of (N,G, (na)a∈G, (ui)i∈N ). I endow each agent with one
unit of a fake budget. Given price vector p = (pa)a∈G, an agent's demand is a lottery over
bundles that gives the agent the highest possible expected utility among all a�ordable
lotteries.

15



De�nition 5.1. Given a probabilistic assignment x, let x(i) : B → [0, 1] be agent i′s
assignment, de�ned as x(i)(B) = x(i, B). An agent i ∈ N demands x(i) if it is the solution
to the following problem:

maxy:B→[0,1]

∑
B∈B y(B)ui(B) subject to∑

B∈B y(B)
∑

a∈G na(B)pa ≤ 1.

Proposition 5.2. There exists a nonnegative price vector p and a feasible expected as-
signment x such that agent i demands x(i). Moreover, if pa > 0 for object a ∈ G, then∑

i∈N

∑
B∈B

na(B)x(i, B) = na.

Proof. The complete proof is in appendix E. The proof is similar to the proof of the
existence of Walrasian prices in the unit-demand environment.

I now construct the P−CEEI mechanism. If x∗ is a feasible assignment produced by
proposition 5.1, then let ε∗ ≥ 0 be the smallest nonnegative real number such that (1−ε∗)x∗
is implementable. Set P − CEEI equal to (1 − ε∗)x∗. Formally, in P − CEEI, agents
submit their ordinal preferences for acceptable bundles. Then, the designer calculates x∗,
using a fake budget b > 0 and also �nds ε∗. Finally, (1− ε∗)x∗ is returned as the expected
assignments.

5.3 Properties of P-CEEI

A cardinal mechanism is a function from the set of cardinal preferences to the set of
implementable allocations, ∆(Φ). Given an allocation x, let Ui(x) =

∑
B∈B x(i, B)ui(B);

this is agent i's expected utility from mechanism x. Let Ui(f(u)) be agent i′s expected
utility from the mechanism f when the pro�le of cardinal preferences is u.

De�nition 5.3. A cardinal mechanism f is asymptotically Pareto-e�cient if, for all
ε > 0, there exists q > Q such that the following holds:

For all q > Q, there is no implementable allocation yq such that Ui(f(u))
Ui(yq) ≤ 1− ε for all

i ∈ N .

A mechanism is ex-ante envy-free if no agent would prefer another agent's assign-
ment. It is asymptotically ex-post envy-free if the probability that an agent envies
another agent's expected assignment shrinks to zero.

De�nition 5.4. The cardinal mechanism f is ex-ante envy-free if, for all i, j ∈ B and
the pro�le of cardinal preferences u, the following holds:

Ui(f(u)) ≥
∑

B∈B f(u)(j, B)ui(B).

Tthe cardinal mechanism f is asymptotically ex-post envy-free if, for all ε > 0, there
exists a Q > 0 such that for all q > Q, all pairs of agents i, j ∈ Nq, all cardinal-utility
pro�les, and all bundles B,B′ ∈ B∗, the following holds:

B �i B′ ⇒ fq(uq)(i, B
′), fq(uq)(j, B

′) ≤ ε.

Theorem 3. P-CEEI is ex-ante envy-free, asymptotically ex-post envy-free, and asymp-
totically Pareto-e�cient.

Proof. See appendix F.
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6 Discussion and Conclusion

This paper introduces a probabilistic mechanism (BPS), which generalizes the PS mech-
anism (Bogomolnaia and Moulin (2001)) to the case of multi-unit demand agents. BPS
produces an allocation that is ordinally e�cient, asymptotically envy-free, and asymptoti-
cally strategy-proof. The di�culty in generalizing the PS mechanism to the case of agents
with multi-unit demand is that, unlike the case of agents with single-object demand, fea-
sibility and implementability do not coincide. Therefore, any probabilistic mechanism for
the case of agents with multi-unit demand must bridge this gap between feasibility and
implementability. Interestingly, as shown in this paper, this issue becomes less severe as
the size of the economy increases. The most plausible alternative mechanism that handles
general preferences over bundles is the A-CEEI (Budish (2011). Note that A-CEEI, unlike
BPS, requires a complex computation of a �xed point.

I have shown that BPS produces an allocation that is asymptotically envy-free. The
envy-free property implies that for all cardinal preferences compatible with their ordinal
preferences and expected utility, agents prefer their own assignment to that of other
agents. However, there could be envy ex-post. In particular, in environments in which
agents prefer larger bundles but there is a shortage of objects, agents point to very large
bundles at the beginning of the algorithm and would have to point to smaller bundles in
the last steps. Therefore, ex-post unfairness is inevitable. To �nd an ordinal mechanism
that handles this issue, one could limit the size of bundles to which agents point. Another
option would be is to ask them to point to multiple smaller bundles and to control the
relative number of bundles that agents receive ex-post.

Because BPS may induce large ex-post envy, this paper (in section 5) also introduces a
cardinal mechanism, P-CEEI, which does better than BPS in the sense of low probability
of ex-post envy. P-CEEI is essentially a generalization of CEEI. One can think of P-CEEI
as a randomized version of A-CEEI except for the fact with P-CEEI, one does not need
to increase the number of objects. Also, P-CEEI is cardinal whereas A-CEEI is ordinal.

In practice, the form of complementarities we might observe could be limited. For
example, in the problem of assigning couple interns to hospital residencies complemen-
tarities might arise from geographical constraints. In course scheduling, courses can be
partitioned into subsets such that courses in the same subset are substitutes for each other
and complementarities exist only between courses in di�erent subsets. A possible future
research direction is to examine restrictions on complementarities in agents' preferences
which would allow one to reduce the gap between feasibility and implementability, to and
design mechanisms with attractive properties.
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7 Appendices

7.1 Appendix A: proof of proposition 2.3

I show the following lemmas:

Lemma 7.1. An assignment x is implementable if and only if for a sequence (δµ)µ∈Φ of
real numbers, the following inequalities hold:

� For all ω ∈ N ×B, x(ω) ≤
∑

µ:µ(ω)=1 δµ.

�

∑
µ∈Φ δµ ≤ 1.

� δµ ≥ 0 for all µ ∈ Φ.

Proof. If x is implementable, then a non-negative sequence that satis�es the �rst two
inequalities with equality exists.

To show the reverse, let (δµ)µ∈Φ be the sequence for expected assignment x. If for all
ω ∈ N×B, x(ω) =

∑
µ:µ(ω)=1 δµ, then x =

∑
µ∈Φ δµµ. This shows that x is implementable.

Otherwise, let ω ∈ N × B be such that the inequality x(ω) <
∑

µ:µ(ω)=1 δµ holds. Let
0 < αω ≤ 1 be such that the equality x(ω) = (1− αω)

∑
µ:µ(ω)=1 δµ holds. For each µ ∈ Φ

such that: µ(ω) = 1, let µω ∈ Φ be such that the following holds:µω(ω′) = µω(ω′) i�
ω′ ∈ N × B − {ω}. I replace (δµ)µ∈Φ with (δ′µ)µ∈Φ. Where (δ′µ)µ∈Φ is constructed as
follows: For for all

∀µ ∈ φ let δ′µ =


(1− αω)δµ if µ(ω) = 1

δµ + αωδ
′
µ′ω

if µ(ω) = 0

δµ otherwise

and ∃µ′ ∈ Φ : µ′ω = µ .

Note that for all ω′ ∈ N × B − {ω}, (i) x(ω) =
∑

µ:µ(ω)=1 δ
′
µ and (ii)

∑
µ:µ(ω)=1 δ

′
µ =∑

µ:µ(ω)=1 δµ. By repeating this modi�cation for all ω ∈ N × B that satisfy x(ω) <∑
µ:µ(ω)=1 δµ, I construct a sequence (δ̄µ)µ∈Φ such that for all ω ∈ N × B, x(ω) =∑
µ:µ(ω)=1 δ̄µ.

The next lemma is standard.

Lemma 7.2. Let P = {(−→x ,−→y ) ∈ Rn × Rm| : A−→x + B−→y ≤
−→
b }, where

−→
b ∈ Rm, A is

a m × n matrix, and B is a m × k matrix. Assume P 6= ∅. Let Q = {−→x ∈ Rn|∃−→y ∈
Rk with (−→x ,−→y ) ∈ P}. Suppose that −→u B =, −→u ≥ 0 has a non-trivial solution. De�ne Q
as follows:

x ∈ Q if ∀−→u ∈ Rm, such that −→u B =
−→
0 and −→u ≥ −→0 then −→u A−→x ≤ −→u

−→
b .

Proof. Let Q′ = {−→x ∈ Rn|−→u A−→x ≤ −→u
−→
b , ∀−→u ∈ Rm such that −→u ≥ −→0 and −→u B = 0}.

Note that Q ⊆ Q′; I show Q′ ⊆ Q. Let −→x ∗ /∈ Q, then the equation B−→y ≤
−→
b −A−→x ∗ does

not have any solution −→y ∈ Rm. Farkas' lemma implies there exists a −→u ∈ Rm such that−→u B = 0, −→u ≥ 0, and −→u (A−B−→x ∗) ≤ 0. This implies −→x ∗ /∈ Q′, therefore Q′ ⊆ Q.

The inequalities in lemma 7.1 can be rewritten in the following form:

�
−→x ≤ U

−→
δ .

�

−→
1 .
−→
δ ≤ 1.
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�

−→
δ ≥ −→0 .
Where

−→
δ = (δφ1 , δφ2 , δφ3 , ..., δφf ). I can rearrange these in the following form:

A−→x +B
−→
δ ≤ C,

where

A =

[
Ip×p
01×p
0f×p

]
, B =

−Up×f−→
1f
−If×f

 , and C =

0p×1−→
11

0f×1

 .
By lemma 2, the set of implementable assignments' corresponding vectors can be rewritten
as:

{−→x ∈ RP |
−→
λ .−→x ≤ f ∀

−→
λ ∈ (R+∪{0})p, f ∈ R+∪{0}, −→g ∈ (R+∪{0})f : −

−→
λ U+f

−→
1 +−→g = 0}.

Dividing by f , I rewrite in the following form:

{−→x ∈ RP |
−→
λ .−→x ≤ 1, ∀

−→
λ ∈ PP such that

−→
λ ≥ 0 and

−→
λ U ≤ −→1 }.

7.2 Appendix B: proof of theorem 1

Let � be a preference pro�le and x be the expected assignment produced by the BPS
mechanism. Assume for a contradiction that for some implementable assignment y, all
agents prefer, and some strictly, y over x under the FOSD criterion. That is, for all
(i, B) ∈ N ×B: ∑

S�iB
x(i, S) ≤

∑
S�iB

y(i, S), (1)

with strict inequality for some (i, B).

If agent i is allocated bundle B with a positive probability, let v(i, B) be the last
step in which agent i ∈ N is allocated bundle B ∈ B. It is the smallest v such that
Mv(0)(i, B) = BPS(i, B). If agent i is not allocated bundle B, let v(i, B) = v(i, B′),
where B′ is the least preferred bundle that i prefers over bundle B and is allocated with
a positive probability. Formally:

BPS(i, B′) > 0 and ∀B′′ ∈ B such that B′ �i B′′ �i B then BPS(i, B′′) = 0.

Let (i∗, B∗) ∈ N ×B be the agent-bundle pair for which inequality (1) holds strict and
v(i∗, B∗) is minimal. In other words,

(i∗, B∗) = argmin{(i,B)∈N×B|
∑
S�iB

x(i,S)<
∑
S�iB

y(i,S)}v(i, B).

Let v∗ = v(i∗, B∗). For all v ∈ N, let Ω(v) ⊆ N × B be the set of all agent-bundle pairs
whose allocation ended in step v or before, that is, all (i, B) ∈ N×B such that v(i, B) ≤ v.
All bundles that have been allocated before step v∗ have the same marginal probability
in x and y; that is, x(ω) = y(ω) for all ω ∈ Ω(v∗ − 1). A constraint from proposition 2.3
has stopped i∗ from consuming bundle B∗ in step v∗. This constraint has the following
form, for some λ : N×B→ [0, 1] satisfying the conditions in proposition 2.3, the following
holds: ∑

ω∈N×B

λ(ω)x(ω) ≤ 1 where λ(i∗, B∗) 6= 0 and λ(ω) = 0 ∀ω /∈ Ω(v∗).

This constraint must hold with equality, since in BPS agents are allocated probability
shares of bundles until one of the constraints from proposition 3.2 binds. By construction
of v∗, x(ω) ≤ y(ω) for all ω ∈ Ω(v∗) and x(i∗, B∗) < y(i∗, B∗). This contradicts the
implementability of y, since

∑
ω∈Ω λ(ω)y(ω) > 1.
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7.3 Appendix C: proof of proposition 4.4

Let B∗ ={S1, S2, S3, ..., Sm}. For all q ∈ N and 1 ≤ j ≤ m, let cqj =
∑

i∈Nq x
q(i, Sj); this

denotes the sum of marginal probabilities that agents are allocated from bundle Sj .

Let R = maxa∈G
∑m

j=1 na(Sj) and M ∈ N be such that R+1
M ≤ ε and M > R. I can

select Q large enough such that the number of objects in the q−economy is more than
2M × R for all q > Q. For all 1 ≤ j ≤ m and q > Q, if cqj ≤ M set dqj = dcqje; otherwise,
set dqj = bcqjc −R . Expected assignment zq is constructed as zq(i, Sj) =

dqj
cqj
xq(i, Sj) for all

i ∈ Nq and 1 ≤ j ≤ m, and zq(ω) = 0 for all other ω ∈ N ×B∗.

Consider an economy where each Sj is regarded as a single object with dqj copies for
all 1 ≤ j ≤ m. Since for all 1 ≤ j ≤ m,

∑
i∈Nq z

q(i, Sj) = dqj , one can implement zq

such that the number of agents that are allocated bundle Sj does not exceed dqj . Let
zq =

∑
α∈Λq pαz

q
α, where z

q
α is a deterministic assignment and pα is the probability of zqα. I

argue all zqα are also implementable in the q−economy. If for all 1 ≤ j ≤ m, cqj ≤M , then∑m
j=1 d

q
jna(Sj) ≤M ×R ≤ nqa. Otherwise,

m∑
j=1

dqjna(Sj) ≤∑
j:cqj≤M

(cqj + 1)na(Sj) +
∑

j:cqj>M

(cqj −R)na(Sj) ≤

m∑
j=1

cqjna(Sj) +

m∑
j=1

na(Sj)−R ≤ nqa. (2)

The last inequality follows from the de�nition of R:
∑m

j=1 na(Sj) ≤ R for all objects
a ∈ G. Inequality (2) guarantees the implementability of zqα in the original q−economy,
hence, zq is also implementable. For all i ∈ Nq and 1 ≤ j ≤ m, if cqj > M, then

|xq(i, Sj) − zq(i, Sj)| = |d
q
j−c

q
j

cqj
|xq(i, Sj) ≤ R+1

M ≤ ε. If cqj ≤ M since zq(i, Sj) ≥ xq(i, Sj),

then zq(i, Sj) can be reduced to xq(i, Sj) without harming the implementability of zq.
Therefore, the implementable expected assignment yq can be constructed such that for
all ω ∈ Nq ×B∗: |xq(ω)− yq(ω)| ≤ ε.

7.4 Appendix D: proof of theorem 2

To proceed with the proof, I �rst prove two lemmas, then I de�ne symmetric implemen-
tation, and after that I synchronize the mechanisms with a clock.

Lemma 7.3. Let Am×n be a nonnegative integer matrix and
−→
b ∈ Zm be a column vector

of integers. If the equation A−→x ≥
−→
b has a real solution −→x ∈ Rn, then it has a rational

solution, formally,

∃−→x ∈ Qn such that A−→x ≥
−→
b .

Proof. Let
−→
x∗ ∈ Rn be the real solution. Since Qn is a vector space if the equation does not

have any rational solution, Farkas' lemma implies ∃−→y ∈ Qm such that −→y ≥ −→0 , −→y A = 0,
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and −→y
−→
b > 0. Therefore, −→y A

−→
x∗ ≥ −→y

−→
b , which implies −→y

−→
b ≤ 0. This contradiction

proves the lemma.

Lemma 7.4. Let −→v 1,
−→v 2, ...,

−→v k ∈ (N ∪ {0})n and for all q ∈ N de�ne the set Vq as
follows:

Vq = {−→x ∈ (N ∪ {0})n|∀ 1 ≤ i ≤ k , −→v i.−→x ≤ cqi},
where cqi is a non-negative integer number. There exists a uniform bound d such that
elements of convex hull of Vq can be represented as a convex combination of elements of
Vq with pairwise Euclidean distance of no more than d.

Proof. Proof has three steps. Let Wq be the convex hull of Vq and ||.|| be the Euclidean
norm.

� Step 1) Consider two sequences of vectors −→x q,
−→y q ∈ Vq,∀q ∈ N. I show, there exists

two sequences −→a q,
−→
b q ∈ Vq such that: (i) −→x q +−→y q = −→a q +

−→
b q and (ii) ||−→a q=

−→
b q|| is

bounded.

Proof. Let (−→a q)q∈N & (
−→
b q)q∈N be two sequences such that: (i) −→a q &

−→
b q ∈ Vq

(ii) −→a q +
−→
b q = −→x q +−→y q, and (iii) ||−→a q−

−→
b q|| is minimal. If ||−→a q=

−→
b q|| is bounded,

we are done; otherwise, let −→a q = (a1
q, a

2
q, a

3
q, ..., a

n
q ),
−→
b q = (b1

q, b
2
q, b

3
q, ..., b

n
q ), and

−→a q=
−→
b q = (z1

q , z
2
q , z

3
q , ..., z

n
q ). For all 1 ≤ i ≤ k, let zn+i

q = −→v i.(−→a q=
−→
b q). One can pick

a subsequence and rename the indexes such that limq→∞ z
i
q ∈ R

⋃
{=∞}

⋃
{+∞} and

limq→∞
zqi
zqj
∈ R

⋃
{=∞}

⋃
{+∞}, ∀1 ≤ i, j ≤ n+ k. Since the distance is not bounded,

some zi converges to in�nity. Let 1 ≤ t ≤ n+k be the index such that |ztq| converges to
in�nity fastest, in other words, let t be such that limq→∞

|ziq|
|ztq|
∈ R for all 1 ≤ i ≤ k. Let

zi = limq→∞
ziq
|ztq|

for all 1 ≤ i ≤ k + n, and −→z = (z1, z2, z3, ..., zn). By construction of
−→z , −→v i.−→z = zn+i. If

−→z is a zero vector, then zn+i = 0 for all 1 ≤ i ≤ k, which contra-
dicts with zt 6= 0; therefore, −→z is a non-zero vector. Since for all 1 ≤ i ≤ n −→v i is an
integer vector, applying the previous lemma, one can replace (zi)1≤i≤n+i with rational
numbers such that zero elements stay zero and non-zero elements keep their signs.
Multiplying by a common denominator ensures that the replacement is an integer vec-

tor. Let −→z ′ = (z′1, z
′
2, z
′
3, ..., z

′
n+k) be the replacement vector and −̂→z = (z′1, z

′
2, z
′
3, ..., z

′
n).

Since −→z is a non-zero vector, −̂→z is also a non-zero vector. Let −→x ′q = −→a q − −̂→z and
−→y ′q =

−→
b q + −̂→z . I show for large enough q, −→x ′q & −→y ′q ∈ Vq. For all 1 ≤ i ≤ n, if

ẑi ≤ 0, then aiq ≥ 0 ≥ ẑi. If ẑi > 0, then limq→∞ a
i
q = ∞; hence for large enough

q, aiq > ẑi, therefore,
−→x ′q ∈ (N ∪ {0})n for large enough q. For all 1 ≤ i ≤ k, I

have −→v i.−→x ′q = −→v i.−→a q − −→v iẑ = −→v i.−→a q − z′n+i. If z′n+i ≥ 0 since −→v i.−→a q ≤ cqi , then
−→v i.−→x ′q ≤ cqi ; if z

′
n+i < 0, then zn+i < 0. Therefore, limq→∞

−→v i.(−→a q −
−→
b q) = −∞,

which implies limq→∞
−→v i.−→a q − cqi = −∞. Hence, for large enough q, −→v i.−→x ′q ≤ cqi .

This shows for large enough q, −→x ′q ∈ Vq. A similar argument shows −→y ′q ∈ Vq for large
enough q. If ẑi > 0, then limq→∞ z

i
q = +∞, and if ẑi < 0, then limq→∞ z

i
q = −∞.

Therefore, if −→x ′q−−→y ′q = (z1
q−2ẑ1, z

2
q−2ẑ2, z

3
q−2ẑ3, ..., z

n
q −2ẑn) then for all 1 ≤ i ≤ n,

|ziq − 2ẑi| ≤ |ziq|, with strict inequality for some i. This implies for large enough q,

||−→x ′q −−→y ′q|| < ||−→a q −
−→
b q||, which contrasts the minimality of ||−→a q −

−→
b q||, since for

all q the equality −→x ′q +−→y ′q = −→a q +
−→
b q holds.
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� Step 2) Let −→x q,
−→y q ∈ Rn be two sequences of vectors such that ||−→x q=

−→y q|| converges
to in�nity. Let −→mq =

−→x q+−→y q
2 and −→m ′q ∈ Rn be a sequence with a bounded distance

from−→mq. For large enough q and all
−→
R ∈ Rn: ||

−→
R=−→m ′q|| < max {||

−→
R=−→x q||, ||

−→
R=−→y q||}

.

Proof. Note that ||
−→
R=−→mq||2 = ||

−→
R−−→x q||2

2 + ||
−→
R−−→y q||2

2 =

||−→x q−−→y q||2
4 . Since ||−→mq−−→m ′q|| =

O(1) and ||
−→x q−−→y q||2

4 converges to in�nity, for large enough q I have:

||
−→
R=−→m ′q|| < ||

−→
R=−→mq||+ ||−→mq −−→m ′q|| =√

||
−→
R −−→x q||2

2
+
||
−→
R −−→y q||2

2
− ||
−→x q −−→y q||2

4
+O(1)

<

√
||
−→
R −−→x q||2

2
+
||
−→
R −−→y q||2

2

< max{||
−→
R=−→x q||, ||

−→
R=−→y q||}.

� Step 3) If the lemma is not true, there exists an increasing sequence of integers,
(qt)

∞
t=1, and a sequence −→s qt ∈ Wqt which is in the convex hull of the elements of the

following set:

At = {−→x t
1,
−→x t

2,
−→x t

3, ...,
−→x t

at} ⊂ V qt,

where the diameter of At converges to in�nity. The diameter of a set is the largest
distance of two points in that set. Let f(At) be the sum of pairwise distance of points
in At with maximal distance, formally:

f(At) = [#{(i, j)|1 ≤ i, j ≤ n, ||−→x i −−→x j || = maxi,j ||−→x i −−→x j ||}].maxi,j ||−→x i −−→x j ||.

Without loss of generality, one can pick At such that the diameter of At is minimal and
among those with minimal diameter, f(At) is minimal. Without loss of generality, I
assume the diameter of At is equal to ||−→x t

1 −−→x t
2||. From step 1, there are sequences−→y t1 and −→y t2 with bounded distance such that for all q: −→x t

1 + −→x t
2 = −→y t1 + −→y t2. Let−→s t =

∑at
i=1 α

t
i
−→x t

i , if α
t
1 ≤ αt2, then set A′t = At∪{−→y t1}∪{−→y t2} \ {−→x t

1} and if αt2 > αt1,
then set A′t = At ∪ {−→y t1} ∪ {−→y t2} \ {−→x t

2}. Note that −→s t is in the convex hull of A′t.
Since −→y t1 and −→y t2 have bounded distance, they have a bounded distance from their

midpoints as well. Step 2 implies that for large enough t, i = 1, 2, and
−→
R ∈ Rn,

||
−→
R −−→y ti|| < max{||

−→
R −−→x t

1||, ||
−→
R −−→x t

2||}. This shows the diameter of A′t is no more
than the diameter of At for large enough t. Since the diameter of At is minimal, the
diameter of A′t is equal to the diameter of At, for large enough t. Assume t is large
enough such that the diameters of At and A′t are equal. I show f(A′t) < f(At). Since

||
−→
R −−→y ti|| < max{||

−→
R −−→x t

1||, ||
−→
R −−→x t

2||}, distance of yti from other points in A′t is
less than the diameter of A′t for i = 1, 2. Since {−→x t

1,
−→x t

2} * A′t, the number of pairs
with distance equal to the diameter is smaller in A′t compared to At. This shows
f(A′t) < f(At) which contradicts the minimality of f(At).

I de�ne symmetric implementation. For any deterministic assignment in the
q−economy, a permutation of this assignment is a deterministic assignment in which
agents with the same type switch their assigned bundles. An implementation is called sym-
metric if for any deterministic assignments that appear in the implementation, all of it's
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permutations also appear with the same probability. It is easy to see that all symmetric im-
plementable assignments can be implemented symmetrically. Let B∗ = {S1, S2, S3, ..., Sm}.
Consider a deterministic implementable assignment x in the q−economy. For all 1 ≤ θ ≤ k
and 1 ≤ j ≤ m, let nθ,j be the number of agents with type θ that are allocated bundle Sj.
I call M = [nθ,j ]k×m the corresponding matrix of x. Implemetability of x is equivalent
to:

�

∑m
j=1 nθ,j ≤ |Πθ|.

�

∑k
θ=1

∑m
j=1 nθ,jna(Sj) ≤ na for all objects a ∈ G.

A uniform distribution over all deterministic allocations with corresponding matrix M
produces an expected assignment in which agents with type θ consume bundle Sj with
probability nθ,j

|Πqθ|
. An additional randomization over corresponding matrices (M o)o∈I with

probability distribution (fo)o∈I produces an expected assignment in which agents with

type θ consume bundle j with probability
∑
o∈I fon

o
θ,j

|Πqθ|
. The distance between two deter-

ministic allocations with corresponding matricesM1 = [m1
θ,j ] andM2 = [m2

θ,j ] is the largest

array in |M1 −M2|; in other words, maxθ,j |m1
θ,j − m2

θ,j |. Lemma 5.4 shows for some d,
all symmetric implementable assignments in the q−economy can be implemented via de-
terministic allocations with distance at most d. Corresponding matrix of a deterministic
allocation can be naturally de�ned in the continuum economy. This form of implementa-
tion and the corresponding matrix can be natural generalized to the continuum economy.
Given a deterministic assignment x∗ in the continuum economy, n∗θ,j is the measure of
agents with type θ that are allocated bundle Sj.

To proceed with the proof, I synchronize the BPS and the NPS mechanisms to a
clock. The date at which a bundle B is consumed by agent i in the BPS mechanism is a
time interval that I represent with [t−(i, B), t+(i, B)]. To calculate the boundaries of the
interval consider two cases:

� i) Agent i ∈ N consumes bundle B ∈ B with a positive probability, i.e., BPS(i, B) >

0. Let εM−1(0) = 0, then t−(i, B) =
∑t−1

ρ=0 εMρ−1(0) and t
+(i, B) =

∑s
ρ=0 εMρ−1(0), where

t is the �rst step in the M1(0),M2(0),M3(0), ... sequence in which agent i consumes
bundle B and s is the last step, i.e. Mt(0)(i, B) > 0, Mt−1(0)(i, B) = 0, and ∀ s ≥ t
Ms(0)(i, B) = Ms+1(0)(i, B).

� ii) Agent i ∈ N does not consume bundle B ∈ B with a positive probability, i.e.,
BPS(i, B) = 0. Let S be i's least preferred bundle among all bundles that he prefers
over bundle B and the mechanism allocates to i with a positive probability, i.e., the
least preferred bundle that satis�es BPS(i, S) > 0 and S �i B. If t is the last step
in which agent i consumes bundle S, t−(i, B) = t+(i, B) =

∑t
ρ=0 εMρ−1(0).

For 1 ≤ θ ≤ k and q ∈ N, let [t−q (θ,B), t+q (θ,B)] be the time interval in which agents with
type θ in the q−economy are allocated bundle B ∈ B∗ in the BPS mechanism.

I de�ne the time intervals for the NPS∗(= BPS∗) mechanism similarly. The date in
which agents with type θ consume bundle B ∈ B∗ in the NPS∗ mechanism is

[s−(θ,B), s+(θ,B)],

where s−(θ,B) = minv{t∗(v)|m∗i (G∗(v)) = B} and s+(θ,B) = maxv{t∗(v)| m∗θ(G∗(v−1)) =
B}. Given a symmetric mechanism f , let f q(θ,B) and f∗(θ,B) be the marginal proba-
bilities that agents with type θ are given bundle B. It is easy to see that NPS∗(θ,B) =
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s+(θ,B)− s−(θ,B) and BPSq(θ,B) = t+q (θ,B)− t−q (θ,B).

I show for all 1 ≤ θ ≤ k and B ∈ B∗, limq→∞ t
−
q (θ,B) = s−(θ,B) and limq→∞ t

+
q (θ,B) =

s+(θ,B). This proves the theorem. I show the equality holds by induction on s+(θ,B).
The smallest s+(θ,B) is the time of the �rst step in the NPS∗ mechanism. Since NPSq

converges to NPS∗ and in both NPSq and BPSq agents are initially allocated proba-
bility shares of their best bundles, rounding proposition implies the induction base. The
induction hypothesis is that the result is true for all (θ,B) that end prior to step v in
NPS∗, that is s+(θ,B) ≤ t(v). Let Ω∗(v + 1) be the set of (θ,B) ∈ {1, 2, 3, ..., θ} × B∗

for which the NPS∗ mechanism stops allocating probability shares of bundle B to agents
with type θ in step v + 1. Since implementability implies feasibility, it cannot be that
lim supq→∞ t

+
q (ω) > t∗(v + 1) for all ω ∈ Ω∗(v + 1). Let τ be the smallest limit of ending

dates consumption of these bundles, i.e., τ = minω∈Ω∗(v+1) lim supq→∞ t
+
q (ω). Showing that

τ = t∗(v+1) completes the proof. If τ < t∗(v+1) since τ ≥ t∗(v), then t∗(v) < t∗(v+1). Let
BPSq(t) and NPS∗(t) be the allocation at time t in the BPS and NPS algorithm. Note
that both BPSq(t) and NPS∗(t) are symmetric expected assignments. Let BPSq(t)(θ, j)
and NPS∗(θ, j) be the probabilities that an agent with type θ consumes bundle Sj up to
time t in the corresponding economy and mechanism. I prove the following lemma:

Lemma 7.5. Assume the induction hypothesis. If τ < t∗(v + 1), then for some δ > 0, an
increasing sub-sequence of natural numbers (qn)∞n=1, and all ε < δ the following expected
assignment is not implementable:

BPSqn(t∗(v)) +
∑

ω̄∈Ω∗(v+1)(t
∗(v + 1)− t∗(v)− ε)I{ω=ω̄}.

Proof. If the lemma is not true, then for all ε that satisfy t∗(v + 1)− t∗(v) > ε > 0, there
exists a Q such that ∀q > Q , BPSq(t∗(v)) +

∑
ω∈Ω∗(v+1)(t

∗(v + 1) − t∗(v) − ε)I{ω=ω̄} is
implementable. Since τ < t∗(v+1) , assume ε < t∗(v+1)−τ . This implies BPSq(t∗(v))+∑

ω̄∈Ω∗(v+1)(τ − t∗(v) + ε)I{ω=ω̄} is implementable for some ε > 0 and large enough q. This
contradicts the de�nition of τ .

Consider the (qn)∞n=1 sequence from lemma 7.5. Since

lim
n→∞

BPSqn(t∗(v)) = NPS∗(t(v)),

for ε1 > 0 there exists N1 > 0 such that for all 1 ≤ θ ≤ k, 1 ≤ j ≤ m, and n > N1,
|BPSqn(t∗(v))(θ, j) − NPS∗(t∗(v))(θ, j)| < ε1. Let (N qn

α = [nαθ,j ]k×m)α∈∆n be the set of
corresponding matrices in BPSqn(t∗(v))'s implementation. Since it is symmetric, assume
matrices are within distance of d. Let πn(α) be the probability of matrix N qn

α . For all
1 ≤ θ ≤ k, 1 ≤ j ≤ m, and α, α′ ∈ ∆qn, |nαθ,j − nα

′

θ,j | < d . Since BPSqn(t∗(v))(θ, j) is a

convex combination of (
nαθ,j
Πqnθ

)α∈∆q , it must be that |BPSqn(t∗(v))(θ, j) − nαθ,j
Πqnθ
| < d

Πqnθ
. For

ε2 > 0, let N2 > N1 be such that for all n > N2,
d

Πqnθ
< ε2. As the proof of rounding

proposition shows, NPS∗(t(v)) can be implemented with the corresponding matrix N∗ =

[n∗θ,j ]k×m that satis�es
n∗θ,j
Π∗θ

= NPS∗(t∗(v))(θ, j) for all 1 ≤ θ ≤ k and 1 ≤ j ≤ m . If

n > N2, then for all 1 ≤ θ ≤ k , 1 ≤ j ≤ m, and α ∈ ∆n, |
n∗θ,j
Π∗θ
− nαθ,j

Πqnθ
| < ε1 + ε2. Consider

the expected assignment NPS∗(t∗(v + 1)) −NPS∗(t∗(v)) , assume M∗ = [m∗θ,j ]k×m is its
corresponding matrix designed as in the proof of rounding proposition. LetM = [mn

θ,j ]k×m

be a corresponding matrix in the qn−economy such that
mnθ,j
Πqnθ

=
m∗θ,j
Π∗θ

for all θ and j. Since

NPS∗(t∗(v))+NPS∗(t∗(v+1))−NPS∗(t∗(v)) is implementable in the continuum economy,
it is also feasible. Therefore,
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�

∑m
j=1 n

∗
θ,j +m∗θ,j ≤ |Π∗θ| ⇒

∑m
j=1

n∗θ,j+m
∗
θ,j

|Π∗θ |
≤ 1,

�

∑k
θ=1

∑m
j=1

(n∗θ,i+m
∗
θ,j)

Π∗i
na(Sj) ≤ q∗a

Π∗θ
for all objects a ∈ G.

Choose ε > 0 such that ε < minθ,j{
n∗θ,j+mθ,j∗
|Π∗θ |

| n∗θ,j + m∗θ,j 6= 0}. I construct the following

corresponding matrices in the qn−economy.

For all 1 ≤ θ ≤ k , 1 ≤ j ≤ m, n ∈ N2, and α ∈ ∆n, Pα = [pαθ,j ] is de�ned as follows:

if m∗θ,j + n∗θ,j = 0 set pαθ,j = 0,

if m∗θ,j + n∗θ,j 6= 0 set pαθ,j = nαθ,j +mn
θ,j − εΠ

qn
θ .

Note that for all α ∈ ∆n, Pα satis�es the following inequalities:

� for all 1 ≤ θ ≤ k,
∑m

j=1 p
α
θ,j ≤ 1,

� for all objects a ∈ G,
∑k

θ=1

∑m
j=1 p

α
θ,jna(Sj) ≤ Πqn

θ .

These two inequalities imply a deterministic assignment with corresponding matrix Pα

is implementable. Let xα be an expected assignment that is generated by a uniform
randomization over all deterministic assignments with corresponding matrix Pα. Also,
let x =

∑
α∈∆n

πn(α)xα. Note that x is an implementable assignment that satis�es

x(θ, j) ≥ BPSqn(t∗(v))(θ, j) +
∑

ω̄∈Ω∗(v+1)∩{Πqnθ ×{Sj}}

(t∗(v + 1)− t∗(v)− ε)I{ω=ω̄}.

Since x is implementable for large enough n and small enough ε the following expected
assignment is also implementable

BPSqn(t∗(v))(θ, j) +
∑

ω̄∈Ω∗(v+1)∩{Πqnθ ×{Sj}}

(t∗(v + 1)− t∗(v)− ε)I{ω=ω̄}.

This contradicts with lemma 7.5.

7.5 Appendix E: proof of proposition 5.1

The proof is an adaptation of a standard existence of Walrasian price, see Budish et al.
(2011).

Given any price vector p = (pa)a∈G, let X(P ) be the set of demanded random assign-
ments. Formally,

X(p) = {x : N ×B→ [0, 1]| if ∀i ∈ N agent i demands bundle i}.

Given a random assignment x let e(x) = (e(x)a)a∈G be the excess demand vector of x,
i.e.,

∀a ∈ G e(x)a =
∑

i∈N
∑

B∈B na(B)x(i, B)− na(G)}.

For each price vector p ∈ [0, b]|G|, de�ne the excess demand correspondence Z that maps
a price vector to the set of excess demand vectors. Formally,

Z(p) = {z = (za)a∈G|∃x ∈ X(p) : e(x) = z}.
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Expand the price space to P̂ = [−|N |−κ|N ||G|, |N |+κ|N ||G|]|G|. Consider the function
s : P̂ → [0, 1]|G|, where s(p) = (max(0,min(pa, |N |)))a∈G. De�ne the correspondence
y : P̂ → P̂ as y(p) = s(p) + Z(s(p)).11 This correspondence admits a �xed point, since it
is convex and upper hemicontinuous. Let p∗ be a �xed point and allocation x∗ ∈ X(s(p∗))
be such that y(p∗) = s(p∗) + e(x∗). I show for all a ∈ G, p∗a < |N |. If for some a ∈ G,
p∗a ≥ |N |, then agents can not a�ord more than 1

|N | probability share of bundles that

include object a. Hence, the a component of e(x∗) is negative. Since sa(p∗) = |N |, it
implies that p∗a < |N |. This contradiction shows for all a ∈ G p∗a < |N |. For all a ∈ G, if
p∗a ≥ 0, then sa(p∗) = p∗awhich implies ea(x∗) = 0. Hence, there is no excess or shortage of
demand for object a. If p∗a < 0 then ea(x∗) < 0, which implies there is an excess supply of
object a. The price vector s(p∗) and feasible expected assignment x∗ satisfy the conditions
in the proposition.

7.6 Appendix F: proof of theorem 3

Let P−CEEIq = (1−εq)xq, where xq is the feasible allocation in the q−economy produced
according to the proposition 5.1. From the rounding proposition we know for ε > 0, there
exists a Q > 0 such that for all q > Q εq < ε.

Let xqi and xqj be agents i and j assignments in the feasible allocation xq. Their
assignments in the P − CEEI mechanism is (1− εq)xqi and (1− εq)xqj be agent i and j's
assignments. Since both agents were given the same budget, xqj is a�ordable for agent
i. Therefore, Ui(xq) = Ui(x

q
i ) ≥ Ui(x

q
j). which implies Ui((1 − εq)xq) = Ui((1 − εq)xqi ) ≥

Ui((1 − εq)xqj) this establishes the ex-ante envy-free property. An agent envies another
agent only when he is allocated ∅. Since P − CEEIq(i, ∅) < ε for all q > Q and i ∈ Nq

the mechanism is asymptotically ex-post envy-free.

Let q > Q. If Ui((1−ε
q)xqi )

Ui(yq) ≤ 1− ε for all i ∈ Nq, since εq < ε, then Ui(yq) > Ui(x
q
i ) for all

i ∈ Nq. Therefore yq is not a�ordable for any agent, i.e.,

∀i ∈ Nq

∑
B∈B∗

yq(i, B)
∑
a∈G

na(B)pa > 1 ≥
∑
B∈B∗

xq(i, B)
∑
a∈G

na(B)pa. (3)

Note that for all a ∈ G pa = 0 or
∑

i∈Nq
∑

B∈B∗ x
q(i, B)na(B) = nqa, therefore

∀i ∈ Nq

∑
i∈Nq

∑
B∈B∗ x

q(i, B)na(B)pa = pan
q
a. (4)

Add up 3 for all i ∈ Nq and apply 4 to imply:∑
a∈G

∑
i∈Nq

∑
B∈B∗ y

q(i, B)na(B)pa >
∑

a∈G pan
q
a. (5)

The inequality 5 contradicts with the implementability of yq. Therefore the mechanism
is asymptotically e�cient.

11Given a set A ⊂ Rn and x ∈ Rn let x+A = {x+ y|y ∈ A}.
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